Numerical Modeling of Natural Convection in Square Cavity
[pic 1][pic 2]% Plot Streamlines & Isotherms for Natural Convection across Square Cavity % Defining constant properties and physical parametersw=1; % Breadthh=1; % LengthA=h/w; % Aspect Ratio of EnclosurePr=0.7; % Prandtl Number as given in the Reading MaterialRa=1000; % Rayleigh Number % To include the Conduction between the sides without Natural Convection% Dividing square sides into Nodal points/Griddx=0.01; % Grid length x-directiondy=0.01; % Grid Length y-directionX=(0:dx:1);Thetafn=zeros(101,101); % Dimensionless Temperaturefor i=1:101 for j=1:101 Thetafn(i,j)=1-X(j); endend% Iterative Procedure till Convergence is achieved% Defining the 2-D Array of desired output parametersStmfn=ones(101,101); % Stream FunctionVortfn=ones(101,101); % Vorticity% Assigning Relaxation Factors < 1r=0.9;rb=0.95; % rb>rfor n=1:500% Assigning Output parameters with previous iteration valuesfor j=1:101 for i=1:101 Vortfn_prev(i,j)=Vortfn(i,j); Stmfn_prev(i,j)=Stmfn(i,j); Thetafn_prev(i,j)=Thetafn(i,j); endend% Computing Vorticity at nodal points within Square cavity% Internal pointsfor j=2:100 for i=2:100 Vortfn(i,j)=((((-1)/(4*dx*dy*Pr))*(((Stmfn(i-1,j)-Stmfn(i+1,j)) *(Vortfn(i,j+1)-Vortfn(i,j-1)))-((Stmfn(i,j+1)-Stmfn(i,j-1))… *(Vortfn(i-1,j)-Vortfn(i+1,j)))))+((Vortfn(i,j+1)+Vortfn(i,j-… 1))/(dx^2))… +((Vortfn(i-1,j)+Vortfn(i+1,j))/(dy^2))… -(Ra*((Thetafn(i,j+1)-Thetafn(i,j-1))/(2*dx))))/((2/(dx^2))+(2/(dy^2))); Vortfn(i,j)=Vortfn_prev(i,j)+(r*(Vortfn(i,j)-Vortfn_prev(i,j))); endend% Vorticity in Edge/Side Nodal points
Essay About Previous Iteration Valuesfor J And Internal Pointsfor J
Essay, Pages 1 (231 words)
Latest Update: June 11, 2021
//= get_the_date(); ?>
Views: 40
//= gt_get_post_view(); ?>
Related Topics:
Previous Iteration Valuesfor J And Internal Pointsfor J. (June 11, 2021). Retrieved from https://www.freeessays.education/previous-iteration-valuesfor-j-and-internal-pointsfor-j-essay/