As well as any possible benefits, the potential application of genetically modified organisms such as plant cells and human embryos poses no immediate threat to human beings in the foreseeable future. The possible application of these potentially beneficial technologies to humans was first proposed in a paper published recently in Nature, which is an exciting new approach to the design of large scale (and inexpensive) genetically engineered (GMO) crops. The research suggests that, instead of merely having the seeds and the genetics, we can produce our own DNA to increase yields. This would increase yields in a number of different areas of the world and help to mitigate climate change, drought, and other environmental hazards. This new approach may also have the potential to improve the survival of millions of us. The authors estimate the yield of genetically modified crops would depend on an estimated 2-4 billion hectares per year of cultivation in South and Central America, with approximately 2-3 billion hectares of annual
Genetic engineering is the changing of an organism’s DNA, genetic material to eliminate unwanted traits or to produce desirable traits. The earliest form of genetic engineering dates back to the scientist Gregor Mendel who did experiments with peas. He bred only the peas with the most desirable traits in order to achieve a healthier and stronger pea (McCuen 8). This method, called selective breeding, is still used today with plants and animals in order to increase food production. Corn plants are selectively bred in order to produce a larger tastier kernel. Another type of genetic engineering called hybridization or crossbreeding involves breeding animals of different species in order to obtain the most desirable traits of both. Male donkeys are crossbred with female horses to produce mules, which are good work animals (Levine 1).
In 1938, Hans Speman proposed cloning a mammal by transplanting an adult cell’s nucleus into a fertilized egg. This process is called nuclear transfer and was initially used to clone a frog in 1952 (Sinha 59). Using this process, nuclear DNA from the body cell of a donor frog was injected into the egg cell of a recipient frog whose nuclear genetic material was removed. The fused cells divided just like a normal fertilized egg and formed an embryo that was genetically identical to the donor frog. In 1980 mice were successfully cloned using a similar procedure. The nucleus of a body cell of an embryo removed from a pregnant mouse was placed into a fertilized egg of another mouse whose own nucleus was removed. The cell was grown in vitro until it divided and became an embryo. It was then implanted into another mouse and allowed to grow to term. Mammalian clones of sheep were reproduced in this fashion as well in 1984. This type of cloning needed to use embryonic cells. Almost all of an animal’s cells contain the genetic material needed to reproduce that animal. However, as cells differentiate into different tissues and organs, they only keep the genetic material needed to reproduce that organ. Therefore, only embryonic cells can be used for cloning because they have not differentiated into a specific type of tissue and still retain all the genes needed to make a copy of themselves (From Year in Review 1997 1). Although this method of cloning has been successful, most nuclear transfers do not result in live offspring. In addition, there have been a lot of objections raised regarding the use of embryos to clone mammals. Many people object based on religious grounds that the embryo has a soul from the moment of conception and therefore it should not be tampered with. Scientists were hoping that they could clone mammals without the use of embryos (Beddington 3).
In 1996, Ian Wilmut, at the Roslin Institute, accomplished this feat. He was able to successfully clone a sheep without the use of embryonic cells. Dolly the sheep was successfully cloned by transferring the nucleus of a non-reproductive cell, a mammary cell, into an unfertilized sheep egg from which its own genetic material had been removed. Dolly was an exact clone of the sheep that donated the mammary cell. Using a mammary cell was unique since until now only embryonic cells could develop into a full organism. Ian Wilmut was able to reprogram an adult cell to dedifferentiate and therefore the cell retained the genetic material needed to produce an entire organism and not just a mammary cell. The key to this new procedure was to time the cell cycle of the mammary cell with that of the egg. In order to do this nutrients were withheld from the mammary cell, which stopped it from dividing. The nucleus of the mammary cell was transferred into the recipient egg. An electrical current was given to the egg, which provided the energy that was needed for fertilization to occur. The egg began to divide and when it became an embryo it was placed into another sheep. The lamb that was born, Dolly was a clone of the donor of the original mammary cell (Kolata 27). This type of cloning is very exciting. This technique may be used to mass-produce animals that mimic human diseases for research purposes or to create animals with genetically