Photovoltaic Cells
Essay title: Photovoltaic Cells
Photovoltaic cells are solid state devices that convert light directly into electricity. Photovoltaic literally means “light electricity.” These devices can be commonly found providing power for small scale devices such as calculators, watches, and small radios. However, they are not limited to small scale systems. They are also used to power satellites, communications equipment, houses and many other things, especially in remote locations where a power grid is not readily available. In isolated locations the only power attainable comes from the sun. The sun shines approximately 1000 watts of energy per square meter of the planets surface, which if harnessed could power any city.
The commercial development of the photovoltaic cell took more then a hundred years to begin. A french physicist Edmond Becquerel first described the photovoltaic effect in 1839. At the age of 19 Becquerel found that certain materials when exposed to light produced small measurable currents. Henrich Hertz also studied the effect in solids in the 1870s and he managed to produce photoelectric cells with an efficiency of about 1%. In the 1940s the new Czochralski process made generating highly pure crystalline silicon possible and furthermore made commercializing photovoltaic cells an option. Development really started however, in 1954 when Bell Laboratories used the Czochralski process to produce a 4% efficient crystalline silicon cell, which was essentially for application in space. This was the beginning of photovoltaic cells.
Photovoltaic cells generally consist of five layers. Two of these layers are semiconductors and the remaining three are merely for protection and to aid absorption of light. The top layer is generally a glass cover for protection against the elements since photovoltaic cells are used outside. Underneath this is an anti-reflective coating. Since most photovoltaic cells are made of silicon and silicon is reflective this prevents the photons from merely being bounced off the cell and allows the highest amount of absorption possible. These two layers are secured with a transparent adhesive. Transparent, obviously, so the photons can pass through it. Surrounding the entire cell is a metallic grid on top and a metal contact on bottom.
The two layers of semiconductor are the most important. Semiconductors are materials that have electrical conductivity intermediate between the high conductivity of metals and the low conductivity of insulators. Conductivity is decided by how many free electrons are available to carry charge, and in turn how tightly electrons are bound to the parent atom. If they are tightly bound electrons can not move and there is no current and the conductivity is low, and vice versa for loosely bound electrons. Semiconductors, such as silicon are characterized by having four electrons in their outer atomic shell. In the semiconductor crystal each atom forms electron pair bonds with four other atoms. Each of these contributes an additional electron, resulting in a total of eight electrons which completely fills the outer atomic shell. Hence, by sharing each atom can fill its outer shell. However this leaves no free electrons for conduction in a pure semiconductor.
A very small amount of conduction can occur because the outer electrons are not tightly bound and can be freed by thermal energy. However for a photovoltaic cell a high amount of conduction is required. To obtain this a semiconductor can be doped. This means that small amounts of impurities are added to the material, usually by diffusion, which yield extra charge carriers and so, raise the conductivity. These impurities are usually elements with a different number of electrons in the outer atomic shell which when put in the semiconductor will destroy the balance of eight electrons in each atoms outer shell. Either an additional electron will be present or a shortage of one. If there is an additional electron this is called an n-type semiconductor, where n stands for negative since the extra charge carrier is a negatively charged electron. If there is a shortage of an electron an imbalance is created where there is a place in the crystal for an electron but no electron to fill it. This is commonly called a “hole.” This is a p-type semiconductor, where p stands for positive since the hole acts like a positive charge carrier.
Figure 1: n-type semiconductor (left); p-type semiconductor (right)
These two types of semiconductors are grown side by side creating what is known as a pn-junction. It is this pn -junction that creates the basis for the photovoltaic cell. When a p-type and an n-type semiconductor are placed side by side like this the extra electrons on the n side are attracted to the holes on the p side.