The Darknet and the Future of Content Distribution
Essay title: The Darknet and the Future of Content Distribution
The Darknet and the Future of Content Distribution
Peter Biddle, Paul England, Marcus Peinado, and Bryan Willman
Microsoft Corporation
Abstract
We investigate the darknet – a collection of networks and technologies used to share digital content. The darknet is not a separate physical network but an application and protocol layer riding on existing networks. Examples of darknets are peer-to-peer file sharing, CD and DVD copying, and key or password sharing on email and newsgroups. The last few years have seen vast increases in the darknet’s aggregate bandwidth, reliability, usability, size of shared library, and availability of search engines. In this paper we categorize and analyze existing and future darknets, from both the technical and legal perspectives. We speculate that there will be short-term impediments to the effectiveness of the darknet as a distribution mechanism, but ultimately the darknet-genie will not be put back into the bottle. In view of this hypothesis, we examine the relevance of content protection and content distribution architectures.
1 Introduction
People have always copied things. In the past, most items of value were physical objects. Patent law and economies of scale meant that small scale copying of physical objects was usually uneconomic, and large-scale copying (if it infringed) was stoppable using policemen and courts. Today, things of value are increasingly less tangible: often they are just bits and bytes or can be accurately represented as bits and bytes. The widespread deployment of packet-switched networks and the huge advances in computers and codec-technologies has made it feasible (and indeed attractive) to deliver such digital works over the Internet. This presents great opportunities and great challenges. The opportunity is low-cost delivery of personalized, desirable high-quality content. The challenge is that such content can be distributed illegally. Copyright law governs the legality of copying and distribution of such valuable data, but copyright protection is increasingly strained in a world of programmable computers and high-speed networks.
For example, consider the staggering burst of creativity by authors of computer programs that are designed to share audio files. This was first popularized by Napster, but today several popular applications and services offer similar capabilities. CD-writers have become mainstream, and DVD-writers may well follow suit. Hence, even in the absence of network connectivity, the opportunity for low-cost, large-scale file sharing exists.
1.1 The Darknet
Throughout this paper, we will call the shared items (e.g. software programs, songs, movies, books, etc.) objects. The persons who copy objects will be called users of the darknet, and the computers used to share objects will be called hosts.
The idea of the darknet is based upon three assumptions:
Any widely distributed object will be available to a fraction of users in a form that permits copying.
Users will copy objects if it is possible and interesting to do so.
Users are connected by high-bandwidth channels.
The darknet is the distribution network that emerges from the injection of objects according to assumption 1 and the distribution of those objects according to assumptions 2 and 3.
One implication of the first assumption is that any content protection system will leak popular or interesting content into the darknet, because some fraction of users–possibly experts–will overcome any copy prevention mechanism or because the object will enter the darknet before copy protection occurs.
The term “widely distributed” is intended to capture the notion of mass market distribution of objects to thousands or millions of practically anonymous users. This is in contrast to the protection of military, industrial, or personal secrets, which are typically not widely distributed and are not the focus of this paper.
Like other networks, the darknet can be modeled as a directed graph with labeled edges. The graph has one vertex for each user/host. For any pair of vertices (u,v), there is a directed edge from u to v if objects can be copied from u to v. The edge labels can be used to model relevant information about the physical network and may include information such as bandwidth, delay, availability, etc. The vertices are characterized by their object library, object requests made to other vertices, and object requests