Physics of Bowling
Join now to read essay Physics of Bowling
The one thing that interests me is bowling. I have been playing all my life and after a whole semester of being in Physical Science, I realized that everything has physics in it. One night after going bowling with my roommate I wondered why when I hit the first pin, only seven went down and thus I lost the game. So, I got on the Internet and found a lot of articles and web sites talking about the physics of bowling. A lot of the web sites were brief descriptions. A guy named Paul Durbin wrote many articles on physics. One of his articles he discussed was about bowling. He mentioned one thing we already went over this semester in physical science. But it seems to me that he neglected to mention other forces that play a big role in bowling and the physics behind it.
Durbin said “In order to accelerate, you need a net force. As soon as I let go of the bowling ball, it’s accelerating. As soon as your fingers are out of the holes, the ball is at its highest point of acceleration.” According to the author, gravity is the net force acting upon an object, which means it is accelerating. The swinging of my arm (back the forward) being the net force. When my fingers leave the hole, it’s accelerating. Now, how fast it goes is determined on how fast you swing your arm and let go. Now that’s all Durbin basically said on bowling. But I realized that Newton’s Laws, momentum, kinetic and potential energy all have their role in bowling too.
Durbin was correct when he explained acceleration. Let me tell you a little something on acceleration. Acceleration is the rate at which the velocity is changing. Because acceleration is a rate, it is measured of how fast the velocity is changing with respect to time of course. The key idea that defines acceleration is change. Whenever we change our state of motion, we are accelerating. A bowling ball that can accelerate fast has the ability to change its velocity pretty fast. A bowling ball that can go from zero to 5 mph in .5 seconds has a greater acceleration than another ball let go by another player that can go from zero to 7 mph in 1 second. So having a high acceleration is being quick to change and not always fast.
Acceleration applies to changes in direction as well as changes in speed. When you let go of the bowling ball at a constant speed of 5 mph you may not be able to feel the effects of acceleration but you know (because of physics) it’s accelerating. You may let go of the bowling ball at a constant speed, but its velocity is not constant because of the change in direction every instant. The balls state of motion is changing. It’s accelerating! Now you can see why it is important to know the difference between speed and velocity, and why acceleration is defined as the rate of change of velocity, rather than speed. Acceleration is like velocity, its directional. If you were to change your arms speed or direction, or even both, you change velocity and you accelerate. Just remember acceleration = change of velocity/time interval.
The one thing that’s cool about bowling is that wooden alley that’s always shiny. The alley is made out of fine wood and is usually shined up. The alley seems to be the friction that slows a ball down. Even when a single force is applied to an object, it is usually not the only force affecting the motion. This is because of friction. Friction is a force that always acts in a direction to oppose motion. When you let go of the ball one way, the air resistance is coming the opposite direction.
Let go of the bowling ball and you can see it in motion. If an object moves, therefore by virtue of that motion it is capable of doing work. It has energy in motion, or kinetic energy. The kinetic energy of an object depends on the mass of the object as well as its speed.